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Bilayer electron-hole systems with unequal electron and hole densities are expected to have exciton-
condensate ground states with spontaneous spin polarization in both conduction and valence bands. In the
absence of spin-orbit and electron-hole exchange interactions there is no coupling between the spin orientations
in the two quantum wells. In this paper we show that Rashba spin-orbit interactions lead to unconventional
magnetic anisotropies, whose strength we estimate, and to ordered states with unusual quasiparticle spectra.
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I. INTRODUCTION

An exciton is an elementary excitation of a semiconductor
in which a conduction-band electron and a valence-band hole
form a bound state. Like Cooper pairs in superconductors,
excitons can condense under appropriate circumstances. The
broken symmetry associated with exciton condensation is
spontaneous phase coherence between conduction- and
valence-band states. Excitonic condensation has been one of
the most anticipated forms of fermion-pair condensation
since first predicted in the early 1960s.1–5

Excitons are traditionally created by optically exciting
valence-band electrons to the conduction band. One key ob-
stacle to the creation of an exciton condensate has been the
finite lifetime of optically generated excitons, limited in most
circumstances by optical recombination processes. It was
proposed6,7 some time ago that the exciton lifetime can be
substantially increased by spatially separating electrons and
holes in a bilayer configuration. Progress in layered semicon-
ductor growth techniques has now made it feasible to realize
bilayer electron-hole systems with great flexibility. Many ex-
perimental studies have attempted to detect condensation of
optically generated excitons using photoluminescence
measurements8–14 in coupled quantum well structures.

Systems in which electrons and holes are present in equi-
librium can be achieved in suitably gated semiconductor bi-
layer systems15,16 and provide a simpler and more ideal real-
ization of an electron-hole fluid. A degenerate bilayer
electron-hole fluid undergoes excitonic condensation17 when
the distance between the two layers is smaller than the aver-
age distance between particles in one layer. The interesting
anomalous transport properties18 associated with exciton-
condensate superfluidity can be studied only in equilibrium
electron-hole systems. The essential technical development
necessary to perform transport measurements that probe ex-
citon condensation is the perfection of techniques, which en-
able separate electrical contacts to electron or hole layers.19

Indeed, magnetoexciton condensation, which occurs in
strong magnetic fields and involves electrons and holes that
can be both in the conduction band, both in the valence band,
or in the separate bands, has already been realized and stud-
ied using transport.18,20–22 Equilibrium bilayer electron-hole
fluids can be created in weak magnetic fields by electrically
generating an external potential difference between nearby

quantum wells approximately equal to the energy gap of the
host semiconductor. This paper is motivated by impressive
recent progress in this direction.15,16,23,24 One important fea-
ture of electrically generated equilibrium electron-hole fluids
is the ability to study the dependence of system properties on
the difference between electron and hole densities. Because
both conduction and valence bands are spin degenerate and
condensation is favored by perfect Fermi surface nesting, it
has been predicted that a finite population difference between
electrons and holes enriches the physics of excitonic conden-
sates, leading, in particular, to spin-polarized phases.25,26

In this paper, we consider a double-quantum-well struc-
ture with two GaAs quantum wells separated by an AlGaAs
spacer. The larger band gap in AlGaAs compared to GaAs
leads to potential profiles in which AlGaAs acts as a barrier
for both conduction-band electrons and valence-band holes.
An equilibrium electron-hole fluid is created by applying a
large electric field across the direction perpendicular to the
layers so that the valence-band maximum in one quantum
well can move above than the conduction-band minimum in
the other. This procedure leads to spatially separated but
strongly interacting electron and hole fluids. In addition to
making electron-hole systems stable, the external field inevi-
tably enhances structural inversion asymmetry and therefore
introduces �Rashba� spin-orbit �SO� interactions27,28 in both
quantum wells.29–32 Recent theoretical work33,34 has shown
that Rashba SO interactions lead to unconventional aniso-
tropic electron-hole pairing in a bilayer system with equal
densities of electrons and holes. The focus of this paper is on
the role that the Rashba SO interaction plays in the spin-
polarized phase expected to accompany excitonic condensa-
tion whenever the electron and hole densities are unequal,
which is referred to as the exciton-condensate ferromagnet
state.

We model the experimental system used to create the
equilibrium electron-hole fluid by assuming that external
charges outside of the bilayer system can be controlled to fix
the electric fields EL, ER on the left- and right-hand sides of
the bilayer system. Treating EL and ER, rather than the elec-
tron and hole densities, as experimentally controllable pa-
rameters represents the real experimental condition more ac-
curately. The system we consider is schematically shown in
Fig. 1. Two external layers �L and R� with charge density �L
and �R control the electric fields EL and ER, which determine
the electron and hole densities in layers A and B. Electrons
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will be in layer A and holes will be layer B. We will use
conduction-band–valence-band picture rather than electron-
hole picture to avoid confusion in calculating the total energy
of the system. For layer A �B�, we consider only the conduc-
tion �valence� band and neglect the valence �conduction�
band. The charge density of layer A is given by �A= �−e�ne.
Layer B also contains background positive charge with den-
sity n0 so that fully occupied valence band has neutral
charge. The charge density of layer B is then �B=e�n0−nv�
�enh. The overall charge neutrality is always preserved, i.e.,
�L+�A+�B+�R=0. Once we fix the external charge densities
�L and �R, the density difference between electrons and holes
�n=ne−nh is determined by the overall charge neutrality
requirement, but ne and nh are individually determined only
by requiring a constant chemical potential through the entire
system. When EL and ER are identical, �L+�R=0 and there-
fore ne=nh, while if EL−ER�0, then �L+�R�0 and �n
=−��A+�B� /e= ��L+�R� /e. Therefore, by controlling the ex-
ternal charge densities �L and �R or equivalently the external
electric fields EL and ER, it is possible to induce density-
polarized �ne�nh� electron-hole bilayer systems. The ability
to tune the difference between electron and hole populations
is therefore a natural feature of electrically generated equi-
librium electron-hole systems. This population polarization
leads to interesting physics that is our main interest.

This paper is organized as follows. In Sec. II, we briefly
review the mean-field theory of an exciton condensate for the
case of spinless electrons and holes. In Sec. III, we restore
the spin degree of freedom and study the spin-polarized
states that occur when the electron and hole densities are
unequal. We find that as the electron-hole population differ-

ence increases, the ground state progresses from one with
pairing in two spin channels to a state with pairing in only
one spin channel and, finally, to a state with no pairing.
States with finite population polarization generally have
spin-dependent pairing. When spin-orbit interactions and
electron-hole exchange interactions are neglected the ground
state is invariant under arbitrary spin rotations in conduction
and valence bands. Each quantum well is spin polarized but
there is no coupling that favors any particular relative spin
orientation. In Sec. IV we turn to a discussion of the role
played by the Rashba spin-orbit interaction in the exciton-
condensate ferromagnet. We find that spin-orbit interactions
can favor spin alignment in a particular direction depending
on the electron and hole densities and the strength of the SO
interaction. In Sec. V we briefly summarize our findings and
discuss some experimental implications of our work.

II. SPINLESS EXCITON CONDENSATION

In this section we establish our notation and introduce the
basic equations that appear in the mean-field theory of
electron-hole condensates by studying a system with spinless
conduction and valence bands localized in spatially separated
quantum wells. One of our main objectives here is to explain
how we deal with the potentially confusing way in which
simple electrostatic effects are combined with pairing in sys-
tems with electron and hole densities that are spatially sepa-
rated and controlled externally. As it turns out, the spin de-
gree of freedom plays a minor role for unpolarized �ne=nh�
systems, so the results in this section are applicable with
minor revisions to electron-hole bilayers with balanced
populations.

We treat the charges in layer L and layer R as well as the
background positive charge in layer B as external charges.
The total Hamiltonian of a spinless bilayer system that has
one conduction band and one valence band is

Ĥ = EES
ext + �

ak
��ak

�0� + Va
ext�cak

† cak

+
1

2�
�

kk�q

aa�

Vaa��q�cak
† ca�k�

† ca�k�+qcak−q, �1�

where the band index a=c for the conduction band c in layer
A and a=v for the valence band in layer B. In Eq. �1� EES

ext is
the electrostatic energy that comes from the Coulomb inter-
action between the external charges, Va

ext is the electrostatic
potential in band a due to external charges, k is the two-
dimensional �2D� wave vector, � is area of each layer, and
Vaa��q� is the Fourier transform of the Coulomb interaction
between electrons in band a and band a� given by

Vcc�q� = Vvv�q� =
2�e2

�q
, �2�

Vcv�q� = Vvc�q� =
2�e2

�q
e−qd, �3�

where � is the dielectric constant. In bilayer systems, unlike
single-layer systems, the Hartree electrostatic energy must be

FIG. 1. �Color online� Cartoon depicting the bilayer system in-
cluding the external charge distribution that gives rise to the exter-
nal electric field. Layer A is the electron layer and layer B is the
hole layer. Layers L and R contain the external charge distribution.
The overall charge is neutral so that �L+�A+�B+�R=0. �L and �R

are purely external charge and lead to gate external fields EL and
ER. �A=−ene is contributed by the conduction-band electrons and
�B=enh is the charge density contribution from valence-band holes.
The electric field outside of the system is zero due to the overall
charge neutrality.

Y.-P. SHIM AND A. H. MACDONALD PHYSICAL REVIEW B 79, 235329 �2009�

235329-2



included explicitly in the mean-field theory since individual
layers are not necessarily charge neutral. Only the overall
charge neutrality is preserved. The bare band energies �ak

�0�’s
are assumed to be parabolic for both conduction and valence
bands,

�ck
�0� =

�k2

2mc
, �vk

�0� = −
�k2

2mv
− Eg, �4�

with the fundamental band gap Eg. Va
ext does not depend on k

and only depends on the z coordinate of the layers. We ne-
glect the small overlap between electron and hole wave func-
tions so that the interaction V conserves band indices and so
that therefore there is no electron-hole exchange interactions.
Allowing for spontaneous interband coherence, the mean-
field Hartree-Fock Hamiltonian is given by

ĤMF = E0 + �
ak

��ak
�0� + �ak

ex + Va
ES�cak

† cak

− �
k

��kcck
† cvk + H.c.� , �5�

where

E0 = EES − �
ak

Va
ES�aa�k� −

1

2�
ak

�ak
ex �aa�k�

+
1

2�
k

��k�vc�k� + c.c.� , �6�

�ak
ex = −

1

�
�
k�

Vaa�k − k���aa�k�� , �7�

�k =
1

�
�
k�

Vcv�k − k���cv�k�� , �8�

�aa��k� = �ca�k
† cak�� = ��	ca�k

† cak	�� . �9�

Note that the Hamiltonian itself depends on the state � and
must be solved for self-consistently. Here �ak

ex is the intraband
exchange field, �k is the interband exchange field induced by
interband coherence, and �aa��k� is the density matrix. These
potentials, which must be also determined self-consistently,
are discussed at greater length below. EES is the electrostatic
energy and Va

ES is the total electrostatic potential at layer a,
due to the whole charge distributions in the system that in-
cludes the Hartree potential from the electrons and holes.
The last two terms in E0 account for the double counting of
the intralayer and interlayer exchange interactions in the
mean-field Hamiltonian and must be included when we cal-
culate the total energy.

The intraband exchange �Eq. �7�� potential for the valence
band appears to diverge because �vv�k��→1 deep in the va-
lence band. This problem is solved by noticing that the ex-
perimentally measured valence-band effective mass mv

� al-
ready includes all interaction effects present in the state with
a full valence band and an empty conduction band, a refer-
ence state we will define as 		0�. 		0� is the solution of the
problem with �L=�R=0. Thus

−
�k2

2mv
� = �vk

�0� + �vk
ex �	0� = −

�k2

2mv
−

1

�
�
k�

Vvv�k − k���0
vv�k��

�10�

=−
�k2

2mv
−

1

�
�
k�

Vvv�k − k�� , �11�

where �0 is the density matrix when the system is in state
		0�,

�0
aa��k� = 
1 for a = v, a� = v

0 otherwise.
� �12�

It follows that

�vk
�0� + �vk

ex = −
�k2

2mv
� − Eg −

1

�
�
k�

Vvv�k − k��


��vv�k�� − �0
vv�k��� , �13�

which remains finite. The total energy of the state 	�� is
measured with respect to the energy Etot

�0� of the state 		0�.
Our calculation requires a self-consistent evaluation of the

difference between the density matrix and the density matrix
in the absence of carriers,

�̃aa��k� � �aa��k� − �0
aa��k� . �14�

With this definition Eq. �5� becomes

ĤMF − Etot
�0� = Ẽ0 + �

ak
�ak�cak

† cak − �0
aa�k��

− �
k

��kcck
† cvk + H.c.� , �15�

where

Ẽ0 = EES − EES
�0� − �

ak
Va

ES�̃aa�k� −
1

2�
ak

�̃ak
ex �̃aa�k�

+
1

2�
k

��k�̃vc�k� + c.c.� , �16�

�ak = �̃ak
�0� + �̃ak

ex + Va
ES, �17�

�̃ck
�0� =

�k2

2mc
, �̃vk

�0� = −
�k2

2mv
� − Eg, �18�

�̃ak
ex = −

1

�
�
k�

Vaa�k − k���̃aa�k�� . �19�

The electrostatic energy EES
�0� of 		0� is zero since there is no

net charge in any of the four layers and the total energy Etot
of 	�� is given by
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Etot − Etot
�0� = EES + �

ak
��̃ak

�0� +
1

2
�̃ak

ex�̃aa�k�

−
1

2�
ak

��k�̃vc�k� + c.c.� . �20�

The mean-field Hamiltonian �Eq. �15�� is, in matrix form,

ĤMF − Etot
�0� = Ẽ0 − �

ak
�ak�0

aa�k� + �
k

�cck
† cvk

† �


� �ck − �k

− �k
� �vk

��cck

cvk
� . �21�

For fixed �L and �R, �n=ne−nh=nL+nR is fixed and we
can obtain the electrostatic potential Va

ES and the electrostatic
energy EES by solving a classical electrostatic problem of
four charged layers. The electrostatic field Va

ES is given by

Vc
ES =

2�e2ned

�
+ C , �22�

Vv
ES = −

2�e2nhd

�
+ �v0 + C , �23�

where

�v0 �
2�e

�
��L − �R�d �24�

and C is a constant reference single-particle energy that we
set to zero. The electrostatic energy per area is given up to a
constant that we disregard by

EES

�
=

2�e2d

�
�1

2
�ne

2 + nh
2� − nh��L

e
−

�R

e
� . �25�

Now we derive the gap equation for the bilayer system
with equal densities of electrons and holes. The system is
completely defined by nL and nR or alternatively by �n and
�0��v0−Eg. We use the latter pair as our parameters for the
following calculations. We can diagonalize the Hamiltonian

ĤMF by introducing new Fermi quasiparticle operators using
a Bogoliubov transformation,

ĤMF = �
k

��k
† k

† ���k
�1� 0

0 �k
�2� ���k

k
� + const, �26�

where

��k

k
� = �uk − vk

vk
� uk

� ��cck

cvk
� , �27�

�k
�1,2� =

1

2
��ck + �vk� � ��k

2 + 	�k	2, �28�

	uk	2 =
1

2�1 +
�k

��k
2 + 	�k	2

� , �29�

	vk	2 =
1

2�1 −
�k

��k
2 + 	�k	2

� , �30�

uk
�vk =

�k

2��k
2 + 	�k	2

, �31�

�k =
1

2
��ck − �vk� , �32�

and the ground state is given by

	�� = �
k

k
†	0� = �

k
�vkcck

† + ukcvk
† �	0� , �33�

where 	0� is the vacuum state in which both the conduction
band and the valence band are empty. This canonical trans-
formation is analogous to the canonical transformation of
BCS theory if we perform an electron-hole transformation on
the valence-band electrons. In the conduction-band–valence-
band picture, these fermion operators correspond to the su-
perposition of conduction- and valence-band states that is
induced by spontaneous phase coherence and diagonalizes
the self-consistent mean-field Hamiltonian. In this language
our mean-field calculation is just standard Hartree-Fock
theory.

We have described the procedure we follow in some detail
because special care is required in how the electrostatic en-
ergy is treated in order to extract the finite energy of an
electrically neutral system correctly. We will consistently use
the conduction-band–valence-band picture of electrons rather
than the electron-hole picture throughout all the calculations
for bilayer systems because it is easier to avoid confusion in
how the canceling Coulombic divergences are handled. The
self-consistent gap equation at zero temperature is obtained
from the definition of the interband exchange field,

�k =
1

�
�
k�

Vcv�k − k���cvk�
† cck�� =

1

�
�
k�

Vcv�k − k��uk�
� vk�

=
1

�
�
k�

Vcv�k − k��
�k�

2��k�
2 + 	�k�	

2
. �34�

We solved the gap equation above self-consistently for a
system with an equal density of electrons and holes, effective
masses mc=0.067m0, mv

� =0.11m0, interlayer distance d
=100 Å, and dielectric constant �=13. We choose the den-
sity difference �n=ne−nh and the initial band overlap �0
=�v0−Eg as two controllable parameters and set �n=0 in
this section. There is close analogy to the BCS theory of a
superconductor and we obtain a similar energy spectrum
with a gap �Fig. 2�. The gap function �k has a maximum
around the Fermi wave vector and decreases as density in-
creases �Fig. 3�. At very high densities, the ground state con-
verges toward the electron-hole plasma state and the gap
approaches zero. These results agree with the previous work
by Zhu et al.35 Even though the attractive interaction is now
a Coulomb interaction rather than the BCS-like short range
interaction, the gap function shows similar behavior, which
implies that the pairing is most significant for electrons and
holes near the Fermi surface.
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III. EXCITON CONDENSATE FERROMAGNETS

We now restore the spin degree of freedom in the bilayer
systems to study its effect on excitonic condensation. In
population polarized systems this additional degree of free-
dom plays an important role by allowing spontaneous spin
polarization to compensate for imperfect nesting of the para-
magnetic state Fermi surfaces. Recently, the experimental
observation of weak ferromagnetism in lightly doped diva-
lent hexaborides36 gave rise to new interest in exciton-
condensate ferromagnetism as a possible explanation for the
experimental finding.37–39 Ferromagnetism in exciton con-
densates is driven by a preference for Fermi surface nesting
of at least one spin component. The spin-polarized state has
some unique symmetry properties related to the approximate
spin-rotational invariance of the microscopic Hamiltonian.
When all operators in the theory of Sec. II are assigned an
additional spin index �, the total Hamiltonian is

Ĥ = EES
ext + �

a�k
��ak

�0� + Va
ext�ca�k

† ca�k

+
1

2�
�

kk�q

aa����

V�q�ca�k
† ca���k�

† ca���k�+qca�k−q. �35�

As in Sec. II, we define 		0� as the full-valence-band empty-
conduction-band reference state. Electron and hole states are
then specified by the density matrix

�̃���
aa� �k� = ��	ca���k

† ca�k	�� − �0,���
aa� �k� = ��	ca���k

† ca�k	��

− �	0	ca���k
† ca�k		0� , �36�

and the mean-field Hamiltonian is

ĤMF − Etot
�0� = Ẽ0 + �

a�k
��̃ak

�0� + h̃ak
�0� + Va

ES��ca�k
† ca�k − �0,��

aa �k��

+ �
a���k

�h̃ak · ������ca�k
† ca��k − �0,���

aa �k��

− �
k

��k
���cc�k

† cv��k + H.c.� , �37�

where the intraband exchange field has been separated into
spin-independent and spin-dependent parts:

h̃ak
�0� = −

1

�
�
�k�

Vaa�k − k���̃��
aa �k�� , �38�

h̃ak = −
1

2�
�

���k�

Vaa�k − k���̃���
aa �k������, �39�

where � is a vector whose components are Pauli spin matri-
ces. We allow electron-hole pairing �conduction-valence co-
herence� between any spin states,

�k
��� =

1

�
�
k�

Vcv�k − k���̃���
cv �k�� . �40�

The band energies and the electrostatic fields are then given
by the same expressions as in the spinless case,

�̃ck
�0� =

�k2

2mc
, �41�

�̃vk
�0� = −

�k2

2mv
� − Eg, �42�

Vc
ES =

2�e2ned

�
, �43�

Vv
ES = −

2�e2nhd

�
+ �v0, �44�

and the constant term is

Ẽ0 = EES − �
a�k

Va
ES�̃��

aa �k� −
1

2 �
a�k

h̃ak
�0��̃��

aa �k�

−
1

2 �
a���k

�h̃ak · ������̃���
aa �k�

+
1

2 �
���k

��k
����̃���

vc �k� + c.c.� . �45�

The mean-field Hamiltonian in matrix form is

0 0.01 0.02 0.03

k ( Å
-1

)

-0.02

0

0.02

0.04

ε k(1
)
,ε

k(2
)
(e

V
)

ε
k

(1)

ε
k

(2)

ε
F

FIG. 2. �Color online� Excitation energy �k
�1,2� of a two-band

excitonic condensate. �0=10 meV and ne−nh=0. The calculated
densities are ne=nh=1.0
1011 cm−2. �F is the Fermi energy.

0 0.01 0.02 0.03

k ( Å
-1

)

0.0

1.0

2.0

3.0

∆ k
(m

eV
)

µ
0

= 5.7 meV
µ

0
= 10 meV

µ
0

= 17 meV
µ

0
= 23 meV

FIG. 3. �Color online� �k in the two-band model for various �0

values. The calculated densities are n=0.8
1011, 1.0
1011, 1.4

1011, and 1.7
1011 cm−2 for �0=5.7–23 meV, respectively.
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ĤMF = �cc↑k
† cc↓k

† cv↑k
† cv↓k

† �H�
cc↑k

cc↓k

cv↑k

cv↓k

� + const, �46�

where the Hamiltonian matrix has the general form

H =�
�ck + h̃ck

z h̃ck
x − ih̃ck

y − �k
↑↑ − �k

↑↓

h̃ck
x + ih̃ck

y �ck − h̃ck
z − �k

↓↑ − �k
↓↓

− �k
�↑↑ − �k

�↓↑
�vk + h̃vk

z h̃vk
x − ih̃vk

y

− �k
�↑↓ − �k

�↓↓
h̃vk

x + ih̃vk
y �vk − h̃vk

z
� ,

�47�

with

�ak = �̃ak
�0� + Va

ES + h̃ak
�0�. �48�

The total energy of � is given by

Etot − Etot
�0� = EES + �

a�k
��̃ak

�0� +
1

2
h̃ak

�0��̃��
aa �k�

+
1

2 �
a���k

�h̃ak · ������̃���
aa �k�

−
1

2 �
���k

��k
����̃���

vc �k� + c.c.� . �49�

Unlike the spinless case, the diagonalization of this 4

4 matrix is not in general trivial. In our calculations we
diagonalize it numerically and use the resulting eigenvectors
to solve the generalized Hartree-Fock equation of the system
self-consistently, allowing for both spontaneous coherence
and spontaneous spin splitting in both conduction and va-
lence bands. As in Sec. II, we use �0=�v0−Eg and �n=ne
−nh as two parameters for the numerical calculations. When
ne=nh, the self-consistent calculation converges to the results
of Sec. II except each quasiparticle state has an additional
twofold spin degeneracy. �The effective magnetic field due to

the intraband exchange term h̃ak vanishes in this case.� Fig-
ure 4 shows the eigenvalues of the Hartree-Fock matrix,
which are the quasiparticle excitation energies. Each quasi-

particle band is doubly degenerate as expected.
When ne�nh the normal state Fermi surfaces of the con-

duction and valence bands have different Fermi wave vec-
tors, frustrating interband coherence that is favored by bands
with identical Fermi surfaces as we have explained. Fermi
surface matching can be restored for one conduction-band–
valence-band pair by splitting the spin-degenerate bands so
that one conduction-band–valence-band pair forms a con-
densed state and the other pair remains in the normal state.
This spin polarization, however, causes the kinetic energy to
increase, which competes with the energy gained by conden-
sation. We therefore expect ground states with spontaneous
coherence and spontaneous spin polarization, provided that
	ne−nh	 is not too small or too large. We refer to these states
as exciton-condensate ferromagnets. See Fig. 5 for a sche-
matic illustration of this point.

Figure 6 shows typical quasiparticle excitation energy
spectrum for a system with ne�nh; these results are for �0
=25 meV and �n=5.0
1010 cm−2. Spontaneous splitting
of the spin degeneracy indeed occurs. One pair of bands
shows an energy gap due to the condensation and the other
pair shows no such energy gap, which indicates that they
have no interlayer coherence. Since the valence-band effec-
tive mass is larger than the conduction-band effective mass,
the splitting in the valence band is much larger than that of
the conduction band to minimize the kinetic energy cost of
achieving nesting. The ground state energy and the energy
bands are invariant under independent spin rotations in either
layer.

In bulk samples, there is a small overlap between electron
and hole wave functions, which is usually neglected �domi-
nant term approximation�. When this small overlap is not
neglected, it gives rise to nonzero electron-hole exchange
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FIG. 4. Quasiparticle excitation energy for a four-band excitonic
condensate state with �0=25 meV and �n=0. The calculated den-
sities are ne=nh=2.04
1011 cm−2.

FIG. 5. �Color online� Schematic diagram of the Fermi surfaces
and the energy bands for spontaneous spin splitting in ferromag-
netic exciton condensates. �a� For different number of electrons and
holes, the conduction-band Fermi surface �solid blue circle� does
not coincide with the valence-band Fermi surface �dotted red
circle�. �b� Conduction-band electrons with spin �c flip to spin state
�̄c so the Fermi surface of �c electrons shrinks and the Fermi sur-
face of �̄c electrons expands. Similarly, �v valence-band electrons
flip to �̄v state so that the Fermi surface of the �v electrons increases
until it matches the �c Fermi surface. The �c conduction-band and
�v valence-band electrons �dotted-dashed violet circle in the
middle� then condense to form excitonic condensates, while the �̄c

and �̄v electrons remain in the normal state. The spin repopulation
necessary to achieve Fermi surface nesting leads to ferromagnetism,
i.e., to spontaneous spin polarization.
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interactions, which favor spin triplet electron-hole pair
states,40 and the system is invariant only under simultaneous
spin rotations. The exciton-condensate ferromagnet then be-
haves like a conventional ferromagnet with negligible mag-
netic anisotropy. In bilayer systems, the overlap is exponen-
tially small and we can therefore safely neglect electron-hole
exchange for typical interlayer distances and barriers be-
tween the two layers. Since we neglect the small overlap the
interaction conserves the band indices and the system has the
spin-rotational symmetry for each band. This SU�2�

SU�2� symmetry leads to degeneracy of spin singlet and
triplet states. The terms in the Hamiltonian that break this
continuous symmetry are extremely small compared to the
bulk case. Thus we have a family of ground states that differ
only in the direction of the spontaneous magnetization of
each layer. This family of ground states has the same mag-
nitude of magnetization for each layer, but total magnetiza-

tion magnitudes vary widely. The intralayer interaction h̃ak
plays an important role here, helping to stabilize the ferro-
magnetic state since it favors spin-polarized states. Although
the spin polarization within each layer is driven by interlayer
interactions, these do not create a preference for the relative
spin orientation of the two layers.

In numerical calculations the final converged spin-
polarization direction depends on the initial guess we choose
to begin the self-consistent loop, and different initial states
lead to different spin-polarization directions. To verify that
the pairing occurs only between one conduction band and
one valence band leaving the other bands without coherence,
we change the spin basis states from spin up and spin down
to �c and �̄c for the conduction bands and �v and �̄v for the
valence bands, which are along the spin polarizations of the
conduction and valence bands, respectively �see Appendix A
for details�. As shown in Fig. 7, only ��c�v is nonzero and all
the other order parameters are zero in the new basis, which
verifies that only �c and �v spin bands are coherent. The
quasiparticle bands �Eqs. �A8�–�A11�� and the ground state
�Eq. �A21�� can be written in a compact form in this basis.

When the density difference is very small, the pair of
bands with different Fermi surfaces can also form a conden-
sate and the spin repopulation readjusts to minimize the total
energy. In the other limit, if the density difference is very
large, the kinetic energy cost accompanying the spin repopu-

lation will be larger than the condensation energy gain. Then
there will be no condensation at all and the system will re-
main in the normal paramagnetic state. The states discussed
above, in which only one condensate occurs, are found in a
broad intermediate regime. The states that manage this com-
promise between different energy contributions are found au-
tomatically by solving the mean-field equations. Within the
current mean-field theory however, due to the overestimated
tendency toward completely spin-polarized normal phase at
low densities, we are limited to not so large density differ-
ences between electron and hole liquids.

IV. INFLUENCE OF RASHBA SPIN-ORBIT
INTERACTIONS

In 2D layers, the Rashba SO interaction appears due to
the structural inversion asymmetry of the confining potential.
The strength of the SO coupling can be tuned by applying an
external electric field perpendicular to the layers.29–32 The
Rashba Hamiltonian can be derived using Löwdin perturba-
tion theory41,42 up to the third order.43 The effective Rashba
SO interactions for the conduction band and for the heavy
hole valence band are

Ĥc
R = �k 
 ẑ · �� = �� 0 ike−i�k

− ikei�k 0
� = hck

R · � �50�

and

Ĥhh
R = i��+k−

3 + �−k+
3� = � 0 ik3e−i3�k

− ik3ei3�k 0
� = hvk

R · � ,

�51�

respectively, where �’s are the Pauli matrices, ��

= ��x� i�y� /2, k�=kx� iky, and tan �k=ky /kx. These SO in-
teractions can be considered as momentum-dependent effec-
tive magnetic fields,

hck
R = ��kyx̂ − kxŷ� , �52�

hvk
R = k3�sin 3�kx̂ − cos 3�kŷ� , �53�

which change direction in spin space as directions change in
momentum space �see Figs. 8�a� and 9�a��. For the conduc-
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FIG. 6. �Color online� Quasiparticle excitation energy for a fer-
romagnetic condensate state with �0=25 meV and �n=ne−nh

=5.0
1010 cm−2. The calculated densities are ne=2.33
1011 and
nh=1.83
1011 cm−2.

FIG. 7. �Color online� The magnitudes of �k in different spin
bases. �a� is in the spin up and down basis and �b� is in the new
basis where the spin quantization direction is chosen to be parallel
to the calculated total magnetization of each layer. In the new basis,
the only nonvanishing � is ��c�v. This calculation is for the same
model parameters used in Fig. 6.
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tion band, the energy dispersion gets an additional linear
term �ck

���=�ck
�0���k and the corresponding spin states are

	ck�� =
1
�2

�	ck↑� � iei�k	ck↓�� , �54�

which are shown in Fig. 8�b�. For the heavy hole valence
band, we get an additional term proportional to k3, �vk

���

=�ck
�0��k3, and the corresponding spin states are

	vk�� =
1
�2

�	vk↑� � ie3i�k	vk↓�� , �55�

which are shown in Fig. 9�b�.
Unlike the case of the electron gas without Rashba SO

interactions, the ground state of the free electron gas does not
solve the Hartree-Fock equation of the system with Rashba
SO interaction. The spin states for each k are determined by
the total effective magnetic field hak

eff that is the sum of the

intraband exchange field h̃ak and the Rashba SO field hak
R .

For the higher energy band with energy �ak
�+�=�ak+ 	hak

eff	, the
spin is parallel to the total effective magnetic field, while for
the lower energy band with energy �ak

�−�=�ak− 	hak
eff	, the spin

state is antiparallel to the total effective magnetic field. The
self-consistency conditions for the intraband exchange field
then lead to

h̃ak = −
1

2�
�
k�

V�k − k��
hak�

eff

	hak�
eff 	

��̃++
aa − �̃−−

aa � , �56�

where the spinor of the state 	ak�� is parallel �+� or antipar-
allel �−� to the total effective field hak

eff, not just the Rashba
field. The total spin Sa of band a is given by

Sa =
1

2�
k

hak
eff

	hak
eff	

��̃++
aa �k�� − �̃−−

aa �k��� . �57�

In the normal state the effect of exchange interactions is
simply to enhance the magnitude of the Rashba interaction
induced spin splitting of the bands. For exciton-condensate
ferromagnets, however, the Rashba and exchange fields are
not, in general, parallel.

The Rashba SO Hamiltonian breaks spin-rotational invari-
ance around an arbitrary axis but maintains invariance under
simultaneous spin and orbital rotations around the z direction
and under inversion z→−z combined with inversion in the
xy plane �k→−k�. Thus we expect that the energy of the
exciton-condensate ferromagnet is independent of the azi-
muthal angle �a of the magnetization and invariant under
reversal of the polar projection, i.e., �a→�−�a. When the
in-plane components of the Rasbha and exchange fields are
not parallel, quasiparticle energies will depend on momen-
tum space orientation. There will therefore tend to be some
orientations in which the conduction- and valence-band
Fermi energies are close and some orientations where they
are more widely separated. Condensation then occurs mainly
in the region in which the two Fermi surfaces are close to-
gether.

In the following we show that, depending on densities and
on the strength of the Rashba SO interaction, the total spin of
the ground state can be along the growth direction �uniaxial
ferromagnet� or the total spin can have nonzero in-plane
component. When the total spin is along the z direction, we
calculate the anisotropic energy by applying an external
magnetic field to force the total spin direction off the z axis
and subtracting the magnetization energy. When the total
spin has a nonzero in-plane component, the total spin of the
ground state can have any azimuthal angle. The rotational
symmetry around the z direction is spontaneously broken in
this case and the quasiparticle energy spectrum is not rota-
tionally symmetric in k space. We show representative ex-
amples for each case below.

Experimental gate control should enable experimental
control over the relative strength of the Rashba interactions
in valence and conduction bands.30,43 In order to reveal the
basic physics more simply we consider systems in which the
Rashba SO interaction acts only in one layer. Figure 10
shows our results when the total spin is along the z direction.
The left panels in this figure are for a system with SO inter-
action only in the conduction band. The parameters are �
=0.05 eV Å, =0, �0=30 meV, and �n=ne−nh=4.0

1010 cm−2. The densities obtained self-consistently are ne
=2.59
1011 cm−2 and nh=2.19
1011 cm−2. The direction
of the total spin of the conduction-band layer is �c=0.04�
and �c=1.72�, which is almost along the z direction. In this
uniaxial case, the quasiparticle spectrum is rotationally sym-

FIG. 8. �Color online� �a� Rashba SO effective magnetic field
hck

R and �b� the spin states for the conduction band. The spin direc-
tion is �k−� /2 for 	ck+� �inner circle and blue arrows� and �k
+� /2 for 	ck−� �outer circle and red arrows�.

FIG. 9. �Color online� �a� Rashba SO effective magnetic field
hvk

R and �b� the spin states for the heavy hole valence band. The spin
direction is 3�k−� /2 for 	vk+� �outer circle and blue arrows� and
3�k+� /2 for 	vk−� �inner circle and red arrows�.
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metric in momentum space �Figs. 10�b� and 10�c��. This cir-
cumstance is achieved in the self-consistent solution by con-
verging to a state in which the intraband exchange field for

the conduction band h̃ck has in-plane components that are
parallel to the Rashba field hck

R . The total effective field of
the conduction band has the form

hck
eff = h��k��sin �kx̂ − cos �kŷ� + hz�k�ẑ . �58�

This form implies that the magnitude of the total effective
magnetic field is independent of the momentum space orien-
tation �k, explaining the isotropic Fermi surfaces. In these
solutions, the in-plane component of the total spin �Eq. �57��
for the conduction-band layer vanishes and we get total mag-
netization Sc only along the z direction. On the other hand,
the absence of SO interaction in the valence band leads to
arbitrary direction for the effective exchange field and there-
fore the total spin Sv for the valence-band layer is in an

arbitrary direction. Similar considerations apply for �=0 and
�0 �right panels in Fig. 10�, where we use �=0, 
=500 eV Å3, �0=30 meV, and �n=ne−nh=−4.0

1010 cm−2. The calculated densities are ne=2.24

1011 cm−2 and nh=2.64
1011 cm−2. The direction of the
total spin of the valence-band layer is �v=0.99� and �v
=0.85�. The self-consistent solutions converge to states with
concentric constant-energy surfaces and the total effective
field is of the form

hvk
eff = h��k��sin 3�kx̂ − cos 3�kŷ� + hz�k�ẑ . �59�

Again, the in-plane component of the total spin �Eq. �57�� for
the valence-band layer vanishes and we get total magnetiza-
tion along the z direction. The direction of the total spin of
the conduction-band layer is arbitrary due to the absence of
SO interaction in the conduction band.

For these uniaxial cases, we can calculate the total energy
of the system with magnetization directions off the z direc-
tion by introducing weak external magnetic field. Specifi-
cally, we apply an external magnetic field strong enough so
that magnetization is off the z axis by �a and then subtract
the magnetization energy M ·Hext from the total energy to
calculate the anisotropic energy of this uniaxial ferromagnet.
Figure 11 shows the numerically evaluated total energy for
�a� ��0, =0 and �b� �=0, �0 as a function of cos2 �a.
It shows that the total energy of the uniaxial system is
roughly proportional to cos2 �a. The energy difference be-
tween the state with magnetization aligned to the z axis and
the state with magnetization perpendicular to the z axis is a
few �eV. Because the magnetic anisotropy energy is very
small, Fig. 11 looks somewhat noisy. We can also derive this
linear behavior by treating the Rashba SO interaction as a
perturbation �see Appendix B for details�. The zeroth-order
ground state is given by Eq. �A21�. We calculate the

0 0.01 0.02 0.03

k ( Å
-1

)

0

20

40
Q

P
en

er
gy

(m
eV

)

0 0.01 0.02 0.03

k (Å
-1

)

-0.02

0

0.02

k y

-0.02 0 0.02
k

x

-0.02

0

0.02

k y

0 0.02
k

x

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. �Color online� Exciton condensate ferromagnet with
uniaxial magnetization with Rashba SO interaction in one of the
layers. Left panels ��a�–�c�� are for �=0.05 eV Å and =0. The
direction of the total spin of the conduction-band layer is along the
z direction. �a� shows the quasiparticle energy spectrum and the
dashed black line is the chemical potential. �b� and �c� are constant-
energy surfaces in momentum space, corresponding to the energies
shown in �a�. �b� is for 0.025 eV �red dotted-dashed line in �a�� and
�c� is for 0.012 eV �blue-dotted line in �a��. Right panels ��d�–�f��
are for =500 eV Å3 and �=0. The direction of the total spin of
the valence-band layer is along the z direction. �d� shows the qua-
siparticle energy spectrum. �e� and �f� are constant-energy surfaces
in momentum space. �e� is for 0.023 eV �red dotted-dashed line in
�d�� and �f� is for 0.01 eV �blue dotted line in �d��.
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FIG. 11. Magnetic anisotropy of uniaxial systems. �0

=30 meV and �n=5.0
1010 cm−2. �a� �=0.05 eV Å, =0; �b�
�=0, =700 eV Å3. With these parameters, the ground state mag-
netization is along the z direction. We apply small external magnetic
field to change the direction of the magnetization and then subtract
the magnetization energy to extract the energy of the system. The
energy per particle shows a linear dependence on the cos2 �a, where
�a is the angle between the z axis and the total spin for band a
=c ,v.
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perturbed energy for each quasiparticle state using states
�A8�–�A11� as the unperturbed quasiparticle states. The total
perturbed energy is evaluated by summing the corrections for
each quasiparticle state up to the Fermi energy of the unper-
turbed ground state, assuming that the Fermi energy does not
change much by the Rashba SO interaction. The first-order
correction vanishes. At second order we obtain

Etot = Etot
�0� + �E + A�2 cos2 �c + B2 cos2 �v, �60�

where �E is the energy correction that does not depend on
the magnetization angles and A, B are constants.

Even though a perturbative calculation indicates that the
ferromagnet should have either an easy axis or an easy plane,
our nonperturbative self-consistent calculations sometimes
find ground state with neither an easy axis nor easy plane.
Instead, in some cases the ferromagnet can have a nontrivial
optimal polar angle and an arbitrary azimuthal angle. Evi-
dently higher order contributions can change the ground state
qualitatively. For a given spontaneously chosen azimuthal
angle the quasiparticle band structure is anisotropic. This
broken XY symmetry leads to intricate and quite interesting
quasiparticle properties. The left panels of Fig. 12 show a
case with ��0 and =0, where the total spin of the con-
duction band has a nonzero in-plane component. The param-
eters used for this system are �=0.03 eV Å, =0, �0
=30 meV, and �n=ne−nh=4.0
1010 cm−2. The calculated
densities are ne=2.59
1011 cm−2 and nh=2.19

1011 cm−2. The direction of the total spin of the
conduction-band layer is �c=0.45� and �c=1.72�. As can
be seen in Figs. 12�b� and 12�c�, the conduction-band quasi-
particle excitation energy dispersions are not rotationally
symmetric. The constant-energy surfaces for the conduction
band shift so that the two bands are closer in one direction
and farther apart in the opposite direction in k space. This
corresponds to an intraband field that points in the same
direction as the Rashba field, but the magnitude of the intra-
band field is a function of not only of k but also of �k. To get
nonzero in-plane components of the total spin along the �c
direction, the total effective magnetic field is stronger when
the azimuthal angle of the spin states of the majority species
�	ck−� for the conduction band� is �c and weaker when the
azimuthal angle of the spin states of the minority species
�	ck+� for the conduction band� is �c. The constant-energy
surfaces are farther in the direction where the effective field
is stronger and closer where the effective field is weaker
since the energy difference between the two spin bands is the
magnitude of the effective magnetic field. Therefore, we ob-
tain the condition for the closer �farther� constant-energy sur-
faces,

�c = �k −
�

2
for closer,

�c = �k +
�

2
for farther. �61�

The blue dashed arrows in Figs. 12�b� and 12�c� show the �k

that satisfy the closer condition above, which agrees with the
numerically calculated constant-energy surfaces.

The right-hand panels of Fig. 12 show a case with �=0
and �0 for which the valence-band magnetization has a
nonzero in-plane component. The parameters used for this
calculation were =400 eV Å3, �=0, �0=20 meV, and
�n=ne−nh=−4.0
1010 cm−2. The calculated densities
are ne=1.59
1011 cm−2 and nh=1.99
1011 cm−2. The di-
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FIG. 12. �Color online� Exciton condensate ferromagnet with
nonzero in-plane component of the magnetization with Rashba SO
interaction in one of the layers. Left panels ��a�–�c�� are for �
=0.03 eV Å and =0, where the direction of the total spin of the
conduction-band layer is �c=0.45� and �c=1.72�. �a� shows the
quasiparticle energy spectrum and the dashed black line is the
chemical potential. �b� and �c� are constant-energy surfaces in mo-
mentum space, corresponding to the energies shown in �a�. �b� is for
0.025 eV �red dotted-dashed line in �a�� and �c� is for 0.014 eV
�blue dotted line in �a��. The black solid arrow depicts the direction
of the total spin in the conduction layer and the blue dashed arrow
depicts the direction of �k=�c+� /2. Right panels ��d�–�f�� are for
=400 eV Å3 and �=0, where the direction of the total spin of the
valence-band layer is �v=0.63� and �v=0.85�. �e� and �f� are
constant-energy surfaces in momentum space. �e� is for 0.015 eV
�red dotted-dashed line in �d�� and �f� is for 0.005 eV �blue dotted
line in �d��. The black solid arrow depicts the direction of the total
spin in the valence-band layer and the blue dashed arrows depict the
direction �k=�v /3+� /6+2n� /3 for integer n.
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rection of the total spin of the valence-band layer is �v
=0.63� and �v=0.85�. For the valence band, the majority
species has spin state 	vk−� and minority species has 	vk+�
because the valence band has opposite energy dispersion
curve compared to the conduction band. So the majority
band has spin states that point to 3�k+� /2 and the minority
band has spin states that point to 3�k−� /2. Thus there are
three closer directions and three farther directions that satisfy

�v + 2n� = 3�k −
�

2
for closer,

�v + 2n� = 3�k +
�

2
for farther. �62�

Figures 12�e� and 12�f� show the directions of the closer
condition by blue dashed arrows, which again agree with the
numerical results very well. These systems spontaneously
break the rotational symmetry around the z direction to make
the Fermi surfaces of one conduction band and one valence
band come close together so that they can form the excitonic
condensate while the other two bands remain normal.

V. SUMMARY AND DISCUSSION

We have studied electron-hole pair condensation in spa-
tially separated bilayer systems. Our work is motivated by
recent progress15,16,23,24 in the preparation of electron-hole
bilayers with carriers that are generated electrically rather
than optically and in equilibrium rather than in a steady state.
These systems already show behavior, in particular, en-
hanced drag voltages at low temperatures, which appears to
be evidence for a non-Fermi liquid ground state driven by
attractive interactions between conduction-band electrons
and valence-band holes. The extremely large drag voltages
expected44 in the two-dimensional superfluid state have not
yet been seen, suggesting that the Kosterlitz-Thouless tem-
peratures of current samples are still below available tem-
peratures. More robust experimental consequences can be
anticipated if systems can be fabricated in which electron-
hole interactions have been strengthened by reducing the
quantum well widths and hence the average distance be-
tween layers.

The most unique and attractive aspects of equilibrium
electrically generated electron-hole systems are �i� the oppor-
tunity to directly probe how transport properties are altered45

by excitonic superfluidity and �ii� the opportunity to control
the densities by tuning the chemical potentials of each layers
and continuously adjust the relative density of electrons and
holes. The study of pairing fermion systems with unbalanced
populations46 has been a major topic in cold-atom physics. In
this paper we have explored some of the peculiarities ex-
pected to be associated with unbalanced populations in the
case of electron-hole bilayers. The main difference between
cold-atom systems and the electron-hole bilayers is that
single-particle states have an additional attached spin label in
each layer. This additional degree of freedom is expected to
qualitatively change the population polarization physics. The
population polarization and the subsequent Fermi surface

mismatch induce spontaneous spin polarization that im-
proves nesting between some Fermi surface pieces and there-
fore increases the pairing condensation energy. When spin-
orbit interactions are neglected, the spin-polarized state is
invariant under independent spin-rotation conduction-band–
valence-band layers. In this paper we have examined how
Rashba SO interactions, which will inevitably be present in
any equilibrium quantum well bilayer system, alter these fer-
romagnetic condensate states. The Rashba SO interaction
arises naturally because of the electric field used to transfer
electrons between layers. The interaction introduces a struc-
tural inversion asymmetry, which breaks the spin-rotational
symmetry and leads to a preferred polar angle of the magne-
tization of each layer. When an in-plane component of the
magnetization is present it implies anisotropic energy spectra
and interaction driven spatial anisotropy in the two-
dimensional plane, which should be readily detected experi-
mentally. Because the anisotropy energy is very small com-
pared to other energy scales and also because of small
crystalline anisotropy effects that are not included in our cal-
culation and appear when the spin-orbit interaction is ex-
panded to higher order in two-dimensional momentum, we
have not been able to establish patterns in the relationship
between magnetization direction and the experimentally con-
trollable system parameters such as the density, the density
difference between electrons and holes, and the strength of
the Rashba SO interaction.

The ferromagnetic condensate phase discussed in this pa-
per will compete with Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO�-type phase47 with nonzero momentum pairing,
which is also expected in population polarized systems.
While we expect that ferromagnetic phase would prevail at
low densities �deep inside the condensate phase in a phase
diagram�, the possibility of FFLO state requires more com-
prehensive study at higher densities where the system is
closer to the boundary between the normal and condensate
phases.
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APPENDIX A: NEW SPIN BASIS FOR EXCITONIC
CONDENSATE FERROMAGNETS

For excitonic condensate ferromagnets in the absence of
SO interaction, described in Sec. III, it is convenient to work
with spin basis states that are parallel to the total spin of each
layer. Let the spin orientation for the conduction �valence�
band have polar angle �c��v� and azimuthal angle �c��v�.
Then the unitary operator Ua

† that connects the two spin basis
sets is

�ca�a

ca�̄a

� = Ua
†�ca↑

ca↓
� , �A1�

where
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Ua
† =�cos

�a

2
sin

�a

2
e−i�a

sin
�a

2
− cos

�a

2
e−i�a� �A2�

for a=c ,v. The order parameters in the new basis are

�k
�c�v =

1

�
�
k�

Vcv�k − k���cv�vk�
† cc�ck�� =

1

�
�
k�

Vcv�k − k��


�Uv
†��v�v

� �Uc
†��c�c

�cv�vk�
† cc�ck��

= �Uc
†��c�c

�k
�c�v�Uv��v�v

, �A3�

where �a is �a or �̄a and �a is spin up or down. Hence we
obtain

��k
�c�v �k

�c�̄v

�k
�̄c�v �k

�̄c�̄v
� = Uc

†��k
↑↑ �k

↑↓

�k
↓↑ �k

↓↓�Uv. �A4�

In this new spin basis, the coexistence of the condensate and
normal fluid can be easily verified �see Fig. 7�.

The Hamiltonian can now be separated into a normal part
and a condensed part,

ĤMF = ĤN + ĤC, �A5�

where

ĤN = �
k

�cc�̄ck
† cv�̄vk

† ���ck − h̃ck
�c 0

0 �vk − h̃vk
�v
��cc�̄ck

cv�̄vk
� ,

�A6�

ĤC = �
k

�cc�ck
† cv�vk

† ���ck + h̃ck
�c − �k

− �k
�

�vk + h̃vk
�v
��cc�ck

cv�vk
� ,

�A7�

and h̃ak
�a is the �a-parallel component of the intralayer ex-

change field in the new spin basis, which is the only nonva-
nishing component of the exchange field. The condensate
part can be diagonalized using the Bogoliubov transforma-
tion as in the two-band model studied in Sec. II, which leads
to the eigenstates

	1k� = 	c�̄ck� , �A8�

	2k� = 	v�̄vk� , �A9�

	3k� = uk
�	c�ck� − vk

�	v�vk� , �A10�

	4k� = vk	c�ck� + uk	v�vk� , �A11�

with eigenvalues

�1k = �ck − h̃ck
�c , �A12�

�2k = �vk − h̃vk
�v , �A13�

�3k = Ek
�1�, �A14�

�4k = Ek
�2�, �A15�

where

Ek
�1,2� =

1

2
��ck + �vk + h̃ck

�c + h̃vk
�v� � ��k

2 + 	�k	2, �A16�

�k =
1

2
��ck − �vk + h̃ck

�c − h̃vk
�v� , �A17�

and

	uk	2 =
1

2�1 +
�k

��k
2 + 	�k	2

� , �A18�

	vk	2 =
1

2�1 −
�k

��k
2 + 	�k	2

� , �A19�

uk
�vk =

�k

2��k
2 + 	�k	2

. �A20�

The ground state 	�� is given by

	�� = �
k�kFc

c1k
† �

k�kFv

c2k
† �

k
c4k

† 	0� , �A21�

where 	0� is the vacuum state with no electrons and kFc �kFv�
is the Fermi wave vector for the normal conduction �valence�
band.

APPENDIX B: PERTURBATION THEORY FOR EXCITON
CONDENSATE FERROMANGET WITH RASHBA SO

INTERACTION

The mean-field Hamiltonian of the ferromagnetic exci-
tonic condensate of electron-hole bilayer system without SO
interaction is given by

ĤMF = ĤN + ĤC, �B1�

where ĤN is the Hamiltonian for the normal components �Eq.

�A6�� and ĤC is for the condensate �Eq. �A7��. For each k,
we have four quasiparticle eigenstates given by Eqs.
�A8�–�A11�, with eigenvalues �A12�–�A15�. These quasipar-
ticle eigenstates are related to the conduction- and valence-
band states by
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�
cc↑k

cc↓k

cv↑k

cv↓k

� =�
sin

�c

2
0 uk

� cos
�c

2
vk cos

�c

2

− cos
�c

2
ei�c 0 uk

� sin
�c

2
ei�c vk sin

�c

2
ei�c

0 sin
�v

2
vk

� cos
�v

2
uk cos

�v

2

0 − cos
�v

2
ei�v − vk

� sin
�v

2
ei�v uk sin

�v

2
ei�v

��c1k

c2k

c3k

c4k

� �B2�

�U�
c1k

c2k

c3k

c4k

� . �B3�

The ground state of this system is given by Eq. �A21�. We
will consider this state as our unperturbed state and treat the
Rashba SO interaction as a perturbation.

In the basis of �	c↑k� , 	c↓k� , 	v↑k� , 	v↓k�� Rashba SO
Hamiltonian is given by

HR =�
0 i�ke−i�k 0 0

− i�kei�k 0 0 0

0 0 0 ik3e−3i�k

0 0 − ik3e3i�k 0
� ,

�B4�

and, in new basis �	1k� , 	2k� , 	3k� , 	4k��, by

HR� = U†HRU . �B5�

Applying perturbation theory for each k, first-order terms
for the quasiparticle energies are

�1k
�1� = �HR� �11 = �k sin �c sin��c − �k� , �B6�

�2k
�1� = �HR� �22 = k3 sin �v sin��v − 3�k� , �B7�

�3k
�1� = �HR� �33 = − �k	uk	2 sin �c sin��c − �k�

− k3	vk	2 sin �v sin��v − 3�k� , �B8�

�4k
�1� = �HR� �44 = − �k	vk	2 sin �c sin��c − �k�

− k3	uk	2 sin �v sin��v − 3�k� , �B9�

and the change in the total energy is

�Etot
�1� = �

i=1

4

�
k

���F − �ik
�0���ik

�1� = �
i=1

4
�

�2��2�
0

�

dkk���F

− �ik
�0���

0

2�

d�k�ik
�1� = 0, �B10�

where the integration over �k vanishes for all �ik
�1�. So there is

no contribution from the first-order terms. Second-order en-
ergy corrections for each k are calculated by

�ik
�2� = �

j�i

	�HR� �ij	2

�i
�0� − � j

�0� . �B11�

After some algebra, we get

�1k
�2� = �2k2� 	uk	2

�31
+

	vk	2

�41
��cos2��c − �k� + cos2 �c sin2��c − �k�� , �B12�

�2k
�2� = 2k6� 	vk	2

�32
+

	uk	2

�42
��cos2��v − 3�k� + cos2 �v sin2��v − 3�k�� , �B13�

�3k
�2� =

�2k2	uk	2

�13
�cos2��c − �k� + cos2 �c sin2��c − �k�� +

2k6	vk	2

�23
�cos2��v − 3�k� + cos2 �v sin2��v − 3�k��

+
	ukvk	2

�43
��2k2 sin2 �c sin2��c − �k� + 2k6 sin2 �v sin2��v − 3�k� − 2�k4 sin �c sin �v sin��c − �k�sin��v − 3�k�� ,

�B14�
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�4k
�2� =

�2k2	vk	2

�14
�cos2��c − �k� + cos2 �c sin2��c − �k�� +

2k6	vk	2

�24
�cos2��v − 3�k� + cos2 �v sin2��v − 3�k��

+
	ukvk	2

�34
��2k2 sin2 �c sin2��c − �k� + 2k6 sin2 �v sin2��v − 3�k� − 2�k4 sin �c sin �v sin��c − �k�sin��v − 3�k�� ,

�B15�

where �ij =� j
�0�−�i

�0�. Using

�
0

2�

d�k sin2��c − �k� = �
0

2�

d�k cos2��c − �k� = � , �B16�

�
0

2�

d�k sin2��v − 3�k� = �
0

2�

d�k cos2��v − 3�k� = � , �B17�

�
0

2�

d�k sin��c − �k�sin��v − 3�k� = 0, �B18�

we can find second-order energy correction

�Etot
�2� = �

i=1

4

�
k

���F − �ik
�0���ik

�2� = �
i=1

4
�

�2��2�
0

�

dkk���F − �ik
�0���

0

2�

d�k�ik
�2� =

�

4�
�

0

kfc

dk�2k3� 	uk	2

�31
+

	vk	2

�41
��1 + cos2 �c�

+
�

4�
�

kfv

�

dk2k7� 	vk	2

�32
+

	uk	2

�42
��1 + cos2 �v� +

�

4�
�

0

�

dk��2k3	vk	2

�14
�1 + cos2 �c� +

2k7	uk	2

�24
�1 + cos2 �v�

+
�2k3	ukvk	2

�34
�1 − cos2 �c� +

2k7	ukvk	2

�34
�1 − cos2 �v� = �E�2� + A�2 cos2 �c + B2 cos2 �v. �B19�

Spin-rotational symmetry is now broken and depending on the sign of constants A and B. The total spin can have either easy
plane or easy axis.
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